462

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

Radiation from a Uniformly Moving Charge

in an Anisotropic Plasma*

H. S. TUANYt anp S. R. SESHADRIY, SENIOR MEMBER, IEEE

Summary~-The radiation from a point charge moving uniformly
in a plasma is investigated when the charge is moving in the direction
of an external magnetic field. In general there are two modes, for
each of which all the components of the electric and magnetic field
are present. The two parameters of interest in this problem are the
ratio u/c, of the velocity of the charges to the free-space velocity of
electromagnetic waves and the ratio R of the gyromagnetic frequency
to the plasma frequency of the electrons. For two sets of values of
these parameters the frequency and the angular spectrum of the
emitted radiation are obtained. In certain cases, as many as three
Cerenkov rays are found to propagate in the same direction; these
multiple rays, however, correspond to different frequency com-
ponents and to different modes of propagation. The motivation for
this investigation is indicated briefly.

INTRODUCTION
7& LOW-FREQUENCY radiation has been ob-

served from space vehicles in their passage

through ionized regions in interplanetary space.
The investigation of possible sources of this radiation is
of current interest. It is possible for charges that collect
on the surface of the space vehicle to radiate in the
course of their motion. Such radiation can have a low
frequency. In order to understand the nature of the lat-
ter type of radiation, the problem of radiation from a
point charge moving uniformly in an anisotropic plasma
is examined in detail in this paper.

The plasma is assumed to be incompressible; it is
idealized so that it has the properties of a dielectric. A
uniform magnetic field is assumed to be maintained
throughout the plasma. The radiation characteristics of
a charge moving uniformly in the direction of the ex-
ternal magnetic field are investigated. It is found that,
in general, the radiation consists of two modes. In all
the cases for which numerical computation of the fre-
quency spectrum has been carried out, the radiation was
found to be always in the lower end of the frequency
spectrum. In the limiting case of an infinite external
magnetic field, the radiation consists of all frequencies
lower than the plasma frequency. This radiation is of
the Cerenkov type and its angular spectrum has been
evaluated for two sets of values of parameters of inter-
est. In certain cases, as many as three Cerenkov rays
are found to propagate in the same direction. These
multiple Cerenkov rays correspond to different fre-
quency components and to different modes of propa-
gation.
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The theoretical interpretation of Cerenkov radiation
in an isotropic dielectric was first given by Frank and
Tamm.! The Cerenkov radiation in anisotropic media
such as uniaxial ferrite crystals, has been investigated,
among others, by Pafmov?? and Ginzburg.* Kolomen-
skii® and Sitenko and Kolomenskii® have examined cer-
tain aspects of the problem of radiation by a uniformly
moving charged particle in a plasma with an external
magnetic field. In their papers Kolomenskii and Sitenko
have not systematically investigated the frequency
spectrum of the ordinary and the extraordinary rays
but have given only the frequency limits within which
the two kinds of rays propagate. Moreover, the relative
strengths of the Cerenkov rays of different frequency
components and their angular distribution have not
been given.

An excellent treatment of the general field of Ceren-
kov radiation together with its applications may be
found in the book by Jelley” and the review article by
Bolotovskii.®

More recently, Majumdar® has treated the radiation
by a charged particle passing through an electron plasma
in an external magnetic field taking into account the
compressibility of the medium. There have been a num-
ber of investigations of a somewhat practical nature on
Cerenkov radiation from a bunched beam in a bounded
medium such as, for example, those by Coleman?!® and
Kenyon.'*
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FORMULATION OF THE PROBLEM

Consider an unbounded, homogeneous plasma which,
for the sake of simplicity, is idealized to be an incom-
pressible, loss-free electron fluid, with stationary jons
that neutralize the electrons on the average. An external
magnetic field is assumed to be uniformly impressed
throughout the plasma in the y direction; ¢, p and y
form a cylindrical coordinate system (Fig. 1). Let

8(y — ut)d
q=qo~(y4 “ote) (1

2mp

represent a point charge ¢, moving with a uniform veloc-
ity # along the y axis. The current density arising from
this uniformly moving charge is given by
§(v — ut)d(p)

e

2mp

J(, ) = 9qou (2)

where r represents the position vector of a point in the
b, p, v space. It is assumed that the source (2) is suffi-
ciently weak so that linearized plasma theory is appli-
cable.

Fig. 1—Geometry of the problem.

Let E(r, t) and H(r, ) be, respectively, the electric
and magnetic field vectors. It is convenient to apply the
Fourier transform pair

fe,) = [ ftr, e @3)

ﬂnﬁ=%f§@wﬁ“w @)

to the source (2) and the field quantities. The Fourier
transform of the source (2) is obtained as

0
nmw=%f)

egilw/u)y, (5)
TP

The electric and magnetic fields E(r, w) and H(r, o)
are known to satisfy, in the frequency domain, the fol-
lowing Maxwell’s equations:

V X E(r, w) = iwuH(r, ») (6)
VX H(z, w) = — we,e* E(r, w) + 97,(r, ). (7)
The components of the relative dyadic dielectric con-
stant e are given by the following matrix:
€1 i€2 0

£ = ""L.ez

€1 0 b (8)
0 0 EgJ
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where

and

In (9) w, and w, are, respectively, the plasma and the
gyromagnetic frequencies.

It is obvious that the field components are independ-
ent of ¢ and are dependent on y only through the phase
factor e« [t is convenient to separate out the y
dependence as follows:

E(r, w) = E(p, w)er@/wv
H(r, w) = H(p, w)ei/wy
JZJ(r; w) = ]y(p, w)g%(w/u)ll_ (10)

With the help of (6), (7) and (10) it is possible to express
H,(p, w), Hy(p, w), Ep, w) and E,(p, w) in terms of
Ey(p, w) and Hy(p, w) as follows:

1
H,(p, w) = —— E4(p, »)

(11)
Uiho
1 9
Hy(p,w) = — — — [pE4(p, ©)] (12)
who p Op
€
Ep(p, w) =|— E¢(p, 0)) - Hd)(P, w) (13)
€1 Uep€y
) 1 1 0 1
Ey(pr w) =T " [pH¢(p, w)] + v.—ﬁ*]y(p: w)“ (14)
tweoes p 0p W€ €s

Also E4(p, w) and Hy(p, w) may be shown to satisfy the
following coupled equations:

63_

ofF1 9 w? w? )
-[——@mm@>+[-q—ﬁ-ﬂmw>
dol p Odp Co? u> €

Twleq€a€s —a
Eylp, @) = ——=Jy(p,0) (15)
ey dp
ar1 o Mw? e w7
—|— — (Es(p, @) | + | — — — — | Eslp, @)
dpl.p 9p Co” € 1t?
twiuoe
— S Hylp, @) = 0, (16)
ey
where
1
Cot = —; €= & — €. (17
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Coupled equations similar to (15) and (16) have been
derived before, among others, by Kales!? in connection
with wave propagation in a ferrite medium.

SpECIAL CASES

The wave equations (15) and (16) become decoupled
when 1) the external magnetic field is absent and 2) the
external magnetic field is infinite. From (9) it is easily
seen that e;=0 in both cases and hence (15) and (16)
reduce to separate wave equations for Hy(p, w) and
E,(p, w), respectively. The absence of a source term in

(16) together with (11) and (12) leads to the result
Ey(p, @) = Hy(p, ») = Hy(p, w) = 0. (18)

From (5) and (15) it follows that
a? 1 9 1
|:—+— —+ & - ﬁ][ﬂ(ﬁ; )
o

_i[&?@.] (19)

dpl. 2mp

Il

where

) w? w? €3
k2 = e T - e
Co® u? €

(20)

The solution of (19) is easily obtained by the method of
the Hankel transform. The result is

igok -
Hy(p, w) = ry H, M (kp), (21)

where
E= 1k (22)

The sign in (22) is chosen in order to satisfy the radia-
tion condition which requires an outward flow of power
at large distances from the source.

In the absence of an external magnetic field, i.e.,
when the plasma is isotropic, (9) with (20) reduces to

(23)

Since the velocity # of the point charge is always less
than the velocity ¢, of the electromagnetic waves in free
space, it follows from (23) that % is purely imaginary.
Hence (21) shows that H,(p, @) rapidly decays from the
source and there is no radiation.

When the external magnetic field is infinite, that is,
in a uniaxially anisotropic plasma, it is found from (9)
and (20) that

249

2 M. L. Kales, “Modes in wave guides containing ferrites,” J.
Appl. Phys., vol. 24, pp. 604-608; May, 1953.
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From (24) it is evident that % is real for w<w, and is
imaginary for w>w,. Therefore, it follows from (21)
that there is radiation only for w <w,. The power radi-
ated per unit path length in the frequency interval be-
tween w and w-dw is given by

I{w)dew = 27pS,dw = Re [7pE,(r, w)Hy*(r, w)]dw, (25)
where S, is the p component of the Poynting vector.
The expressions for E,(r, w), and Hy(r, w), needed for
the evaluation of I(w) in (25) are obtained with the use
of (10), (14) and (21). The Hankel function appearing
in these expressions is replaced by the leading term of
its asymptotic expansion for large k. When only the
leading terms are retained, the result is
iqo7é 2 L .
— gt kpT 3T Dpilw/u)y

Hy(r, w) =
o(r, @) sV o

1q.k? 2 .
Ey(l‘, w) = ez(kp+37r/4)ez(w/u)y. (26)
8we €z mkp
The substitution of (26) in (25) gives
() q.kk o
= 32we, €3

Since in the propagation range w <w,, €; 1s negative, (27)
will be positive only when 2= —k. In that case, at large
distances from the source, the net flow of power will be
directed outward from the source, thus satisfying the
radiation condition. Therefore, on using (24) and (9),

(27) reduces to
Golwy (1 uz> w
32e,u? ¢t/ wy

I(w) given in (28) is the total energy radiated per unit
frequency interval per unit path length. In Fig. 2 the
frequency spectrum I(w) is plotted as a function of w.
The total energy radiated per unit length of path is

given by
gt /1 1) .
_—— . 29
64eo<u2 ) @)

I{w) = (28)

W= 2f I(w)do =
0

The » component of the Poynting vector .S, given by

Sy = — 3 Re Ey(z, 0)H*(z, w) (30)
is obtained with the use of (13) and (21) as
_ 02 uZ 2 1/2
S, = —u[<1 - ~><1 - —“’—)} . @Y
6dmre,u’p Co? wp?

The angle 6 between the direction of motion of the
charge and the Poynting vector, or the direction of the
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Fig. 2—Frequency spectrum B,= =,

2 2 2
1 L1 Qo o u®
I(cé?) Co 2 L Z’>2=’ou2(1 Coz)
4_
!
!
I
L I
2 I
I
i
{
[¢] ."ZL 2] ™

Fig. 3—Angular spectrum B,= =,

Cerenkov ray is given by

Sp 1£2 1/2 pr ~1/2
mw=_=_Q_—><w_Q NED
Sy Co* w?

In the propagation range w <w,, the right-hand side is
seen to be negative and hence shows that the Cerenkov
ray makes an obtuse angle with the direction of motion
of charge. It is instructive to examine the angular dis-
tribution of the radiated energy. The radiation is obvi-
ously circularly symmetrical about the direction of
travel of the charge. The angular spectrum I(f) may
be defined by the relation I(f) sin 9[ df| =I(w)dw.
Hence, from (28) and (32), it follows that

cos 8

0260 2 Zt2 2
1) = 222 <1 ——>
32¢,u2 Co® u? 2
1 — " cos? g
Co?

The angular spectrum is plotted in Fig. 3. From an
examination of (32), it is evident that the lowest fre-
quency is directed behind the source, whereas the fre-
quencies close to w, are radiated at right angles to the
direction of the source. The frequency in the direction
of maximum radiation will depend on the ratio u/c,. At
a given time, the entire radiation is contained in the
half space behind the source.

SoLuTIiON OF THE COUPLED WAVE-EQUATIONS
(15) axnp (16)
It is proposed to solve the coupled wave-equations
by the method of the Hankel transform. For that pur-

pose, let the following Hankel transforms of order 1 be
defined
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A0 = [ 0°°H¢<,,, DT 1GPpdp (342)
10,0 = [ T, dnosas ()
Be, ) = [ Eulo, 075000t (350)
Ey(p, w) = f :Ez,(s*, w)J1(¢p)ids, (35b)

where J; is the first-order Bessel function. It is con-
venient to introduce the following shorthand notations:

. W w? e
ki*=—e—— — (36)
602 u? €]
w? € w?
kf =— — —— - 37

When Hankel transformations (34a) and (35a) are
applied to (15) and (16) and the resulting algebraic
equations for E,({, w) and H4({, w) are solved, it follows
that

go§ (k2 — &%)

¢, 0) = A (38)
and
Tolt, ) = AL Hee (39)
W) = ——————
¢ 47[’1461A
where
w4€2263
= (bt — ) — 1) —
colt’er?
= (¢ — kA2 — k7). (40)

Since Hy(¢, w) and E4({, w) are odd functions of ¢, it is
possible to recast (34b) and (35b) in the following form:

1 ®__
Holpy o) =~ [ A ameesa @y

Es(p, w) = & f wEs(s“, W H O p)sds.  (42)
2 —x

With the help of (38)—(42), it follows that
g (et 1)
8rd o (52— RA(* — k%)
igowzuoezf” : 'y
Eslp, &) =
o) =) L raE = k)
H, O (Ep)ids.

The integral (43) may be evaluated to give the following
result:

Hy(p, w) = H,O(go)ids (43)

(44)

Hy(p, @) = Hyolp, @) + Hyolp, ), (45)
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where
'I:QOzo ko - -
Hyolp, ) = — H; D (kop) (46a)
8 k2 — k2
iQOﬁe ke - k22 e 7% 1 b
Holp, ) = 205 5L IO, 6h)
In (46), k, and %, are given by
ko= + k,, E, = + k.. 7

The sign in (47) is chosen so as to obtain a net outward
flow of power at large distances from the source. The
result of the evaluation of the integral (44) can be con-
veniently given as follows:

E¢<p, w) = E¢0(p7 O)) + E¢e(P, w)) (48)

E¢>0(p7 w) = Z0H¢0(pa w)y E¢9(p7 w) = ZeH‘M(P: w): (49>
— U, € — i,

Zo = Hot2 © Hoe2 (50)

=, = .
uel(kDZ —_— kzg) uel(kﬁ - k22)

It is seen from (45) and (48) that, in general, there are
two possible modes which are denoted by subscripts o
and e. In the preceding section it was found that in the
case of an infinite external magnetic field there is only
one mode with wave number given by (24). Of the two
modes which are possible in the presence of a finite
external magnetic field, that which in the limiting case
of infinite external magnetic field has the same wave
number as given by (24) is designated with a subscript
o (which stands for the ordinary mode). The other mode
which arises only when the external magnetic field is
finite is called the extraordinary mode and is denoted
with a subscript e.

It is evident that the ordinary and extraordinary
modes propagate only when k, and k&, are positive and
real. The modes are nonradiating when the correspond-
ing & has an imaginary part. The sign of the roots of
(40), therefore, determines whether the corresponding
mode is propagating or not and is obviously dependent
of the parameters w,, w, and #. Since the determination
of the signs of the roots of (40) turns out to be difficult in
the general case, the dispersion curves w—k, and w—k,
are examined for some special values of the parameters.
The nature of the radiated fields is then examined for
these special cases.

DisPrERSION RELATIONS

In order to find out the frequency spectrum of the
radiated energy, the frequency ranges for which %, and
k. are positive should be determined. Before proceeding
to examine the dependence of %, and k. on w, it 1s de-
sired to point out that, among others, Allis*® has dis-

13 W. P. Allis, “Propagation of waves in a plasma in a magnetic
field,” IRE Trans. oN MicRowavE THEORY AND TECHNIQUES, vol.
MTT-9, pp. 79-82; January, 1961,
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cussed the characteristics of plane wave propagation in
an anisotropic dielectric using wave-normal surfaces
which by a transformation!¢ can be used to investigate
the Cerenkov radiation spectrum. Forexplicit determina-
tion of the frequency ranges of propagation it is simple
and convenient to determine in a straightforward
manner the functional dependence of &, and k. explicitly
in terms of w. It follows from (36), (37) and (40) that

9

B = —— [—b + B — 4], (51)
214°
where
el 4 W
b= @ © - (t’:l2 — e?+ 6163)] (52)
L €1 Co” €1
and

L (B) () )
L. €1 Co Co €1

When the external magnetic field is infinite, it is seen
from (9) that ¢,=1 and e=0. For this special case, it is
found from (52) and (53) that

%2 742 2
b=(1+e3)<1————>, c=e3<1——>. (54)
Co? Co?

The substitution of (54) in (51) yields

2 1 1 2 4 1 1 2
k?o,e = <;§ o (0* — @), (;:2 —p ) (55)

where the first term corresponds to the upper sign in
(51) and the second term corresponds to the lower sign.
Comparison of (55) with (24) shows that the upper and
lower signs in (51) correspond, respectively, to the
ordinary and the extraordinary modes.

It is convenient at this stage to specialize and let
1/co=1/+/2. With the help of (9), therefore, (51) and
(52) become

20 — 2Q°R* + R? — 2

b= (56)
20(Q* — R*— 1)
and
Q2 — 1)(Q2 RQ 1)(Q2 — RQ 1
4C:( (e + + 1)¢( + ), 7)
Q(Q2 — R — 1)
where
w We
Q=— and R=—- (58)
Wp Wp

The general behavior of b as a function of Q is different
depending on whether R <+/2 or R>+/2 and these are

14 P, S, Johnson, “Cerenkov radiation spectra for a cold magneto-
active plasma,” Phys. of Fluids, vol. 5, pp. 118-120; January, 1962,
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depicted in Fig. 4. When R<+/2, b has only one zero at ac |
2=, given by ,: L
R®+ [(R® — 1)2 + 3]i12 1

0,2 O R N

2

|
|
— |
For R>+/2, in addition to the zero at 2=, b has 0 10 "
another zero at =, where
R2 — [(RZ — 1)2 + 3]1/2

912 = 2 N (60)

R<?2

At Q=Q=+/1+R2 b has a singularity. As Q tends to

infinity, b asymptotically approaches unity. |
An examination of (57) reveals that the general be- 4c |

havior of 4¢ as a function of , is different depending on | L

whether R>2 or R<2, (Fig. 5). For R<2, 4c has a fpmm-mme e =

zero for =1 and a singularity at Q= When @ tends

to infinity, 4¢ asymptotically approaches unity. How- o PN

ever, for R>2, 4¢ has two additional zeros at Q: and £
given by

R>2

R—~/R*—1
93 = _"‘“—2*‘_‘_‘— (613,)

2
Q = M . (61Db)
2
It is seen from (51) that the behavior of b2—4c as a
function of € is necessary for the determination of the
range of frequencies for which k&, and &, are positive and
real. It can be shown with the help of (56) and (57) that

R?
2R2[Q%+—§-—1}
b2 — 4¢ = . 62
¢ 94[92 — R? — 1]2 ( )

]
b |
I
|
-
|
1
Q |
2
0 EQS aQ
t
i
§
: R<vZ
|
b} :
i
{
1
1: ————————————
/\ l
|
07, [PANIOR o)
|
: R>V?2 (c)
i

' Fig. 6—Behavior of band 4¢ as a function of . (a) Case1): 0 <R <~/2
Fig. 4—b as the function of Q. (b) Case 2): vV2<R<2. (c) Case 3): 2<R< .
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From (62) it is obvious that #*—4¢<0 depending on
whether Q< Q5 where

2

Qr=1——- 63
s s (63)

It is evident that the general behavior of k, and k.
as a function of & will be different {or the following
three different ranges of R, namely 1) 0<R<+/2
2) v2<R<2 and 3) 2<R< . In Fig. 6, b and 4c are
plotted as a function of Q for the three different ranges
of R. In particular, for each case, the relative values of
1, & — % are made clear.

Case 1)

When Q<Q< w0, b2~-4¢>0; also 4¢>0 resulting in
I \/b2—4cl < f bl and, hence, the signs of &,* and k,* are
determined by the sign of —b&. In that frequency range
b>0; hence k&, and k,? are both negative and neither of
the modes propagates. For the same reason both the
modes do not propagate in the frequency range Q5 <Q
<1. When 0<Q<Qs, b>—4c¢<0 and, hence, %, and %,
will have an imaginary part, as a consequence of which,
both the modes are exponentially damped and there is
no propagation. For 1<Q <%, 4c¢ is negative so that
’ \/b2—4cf > [ bI . Hence, the upper and the lower signs
in (51) yield, respectively, positive and negative values:
the ordinary mode, which corresponds to the upper sign
in (51), propagates in the range 1 <Q <.

Case 2)

It follows from arguments such as those given above
that neither of the two modes propagates in the ranges
0<2<1 and 2<Q<» and, as before, the ordinary
mode propagates in the range 1 <Q <Qs.

Case 3)

As in the two previous cases, it can be argued that in
the frequency ranges 0<Q<5, 1<Q<Q and Q<
< «, there is no propagation. Only the ordinary mode
propagates in the two frequency ranges Q3 < <1 and
94 <Q < Qﬁ.

In the frequency range Q<Q<Q; b2—4c>0; also
since 4¢>0, | \/bz——4c[ < I b[ . Therefore, the sign of k,?
and %.? is the same as that of —b. Since b<0 in that
range of frequencies, both %, and k. will be positive,
and hence, both the ordinary and extraordinary modes
propagate in that frequency range.

From the foregoing discussions, it may be concluded
that for R<2, only the ordinary mode propagates in
the frequency range 1 <Q < Q. But for R>2 both modes
propagate, the ordinary mode in the two frequency
ranges {; <2 <1 and 2 <Q<Q and the extraordinary
mode in the {frequency range Q5 <Q < Q.
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In what follows, two special values are chosen for R,
namely R=1 and R=2+/2, which lie respectively in the
two different ranges R <2 and R>2. Note that R=2+/2
gives the widest frequency spectrum for the extraordi-
nary mode. In Fig. 7 the propagation ranges for the
two modes are shown pictorially for the two special
values of R.

vz
Extraordinary Wave Propagating

Ordinary Wave Propagating

(b)

Fig. 7—Propagation ranges for the ordinary and extraordinary
modes. (a) Case 1): R=1. (b) Case 2): R=2+/2.

FREQUENCY SPECTRUM OF THE RADIATED ENERGY

It is possible to show that the ordinary and the ex-
traordinary modes are orthogonal and hence, the total
power radiated can be obtained as the sum of the powers
in each of the two modes separately. The powers radi-
ated in the ordinary and extraordinary modes per unit
path length in the frequency interval between w and
w=dw are given, respectively, by

T(w)dw = 27pS ,0dw I (w)dw = 27pS,dw, (64)

where S,, and S, are the p components of the Poynting
vector for the two modes. They are obtained from the
following relations:

Soe=13 Re [E,.(r, 0) Hyo™ (£, w) — Eyo(t, w) H o *(r, w)] (65a)
Spe=% Re [Eye(ra w)Hqﬁe*(r: ‘*’) —E¢e(1‘, W)Hye*O‘; ‘*’)] (65b)

The expressions for Hy(r, w), E4(r, w), H,(r, ») and
E,(r, w) needed for the evaluation of S, in (65) are ob-
tained with the use of (10), (12), (14), (46) and (49).
The Hankel function appearing in these expressions is
replaced by the leading term of its asymptotic expansion
for large k. The result, when only the leading terms are
retained, is as follows:
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Ordinary mode

Hyo(r,0) = — 19oko ko’ — ki’ 1/ 2

8 ko2 - ke2 7rkop
.+ v (hopT 3/ 8) gitw/u)y
oko o 1 2
Edw(r: w) = ’ — /‘/
8  wer kSl — k2 wkop
.ei(l;opﬂ—-SWI‘i)ei(wlu)y
Hyo(r,0) = ~ — Ego(r, )
Wio
Eyolr, @) = —— H(z, ). (66)
WeEy€EZ
Extraordinary mode
iqoke Bo? — ko 2
H¢e(1‘, w) =
8 kOZ — kgz Tkep
,eb(%ep$81r/4)ez(w/u)y
0]%3 w2,u062 1 2
E¢e(1‘, w) = q /‘/
8  we k2 — k2 Tkep
et (hepT 37/ ) pilwfu)y
Hyo(r,0) = — — Egu(r, )
Who
Eylr, ©) = —— Hyolr, ). (67)
WeEp€s
The substitution of (65)—(67) in (64) yields
g2k ok, (ko — ko?)?  wleuo
I(w) = . [ el (6sa)
32w(ke? — koY) €63 e 2u?
and
qotk k. (B2 — k%) wieuo
I(w) = [ - . } . (68b)
32wk, — k.2 €o€3 €2u?

I(w) given in (68a) is the total energy radiated per unit
frequency interval per unit path length; it is called the
frequency spectrum of the ordinary mode. Similarly,
I.(w) is the frequency spectrum of the extraordinary
mode.

1t is desired to examine the frequency spectrum for
the particular value of 1/¢, = 1/+/2 and for the two cases
R=1and R=+2.

Case 1): R=1

In this case, the extraordinary mode is not excited
and, hence, I,(w) =0. The ordinary mode propagates in
the range 1 <Q<~/2. For u/c,=1/+/2 and R=1, (68a)
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can be simplified to yield the following expression for the
frequency spectrum:

gvzwp
-[o = 4
(@) 32u’%,

o [3—4(Q2 — 1) — 24/807 — 7][/8Q2 — T + 1]
(Q2 — 1)(Q2 — 2)/8Q2 — 7

» (69)

where the upper and lower signs correspond to the upper
and lower signs in (47). In the frequency range 1<Q
< +/2, I,(w) is positive only if the upper sign is chosen.
The choice of upper sign in (69) insures that the net flow
of power at large distances from the source is directed
outward and thus the fulfillmenent of the radiation con-
dition is assured by the choice of the upper sign in (47).
The result is a cylindrical wave with outward traveling
phase-front. In Fig. 8 the frequency spectrum is plotted
as a function of Q.

Case 2): R=2~/2

Both the ordinary and extraordinary modes are ex-
cited when R=2+/2. The ordinary mode propagates in
the frequency ranges 0<Q<1 and v24+1<02<3 and
the extraordinary mode, for 0 << A/2—1. On setting
u/co=1/4/2 and R=2+/2 in (68a), the resulting expres-
sion, after some simplification, reduces to the following:

Qf — 89240+ 3
O—-Qe -1

2
02w
]o(w)= + do ©o

* 70
128¢,u? (70)

where, as before, the upper and lower signs correspond
to upper and lower signs in (47). In the frequency range
0<Q <1, I(w) is positive only if the lower sign is chosen.
The choice of the lower sign in (70) leads to the fulfill-
ment of the radiation condition. This choice of sign in
(47) shows that the ordinary mode in the frequency
range 0<Q<1 has an inward traveling phase-front; it
may be called a “backward wave.” However, in the fre-
quency range +/2+1<Q<3, the upper sign in (70),
and hence the upper sign in (47), should be chosen in
order that the radiation condition be satisfied. In Fig.
9(a) the frequency spectrum of the ordinary wave is
plotted as a function of €.

Similarly, the substitution of w#/c,= 1/4/2 and
R=2+/2 in (68b) will yield, after some simplification,
the following expression for the frequency spectrum of
the extraordinary wave:

glw, Q' —8Q—4Q+3
O—-a)@Qe+1)

In the range 0<Q<~/2—1, I(w) in (71) is positive
only when the upper sign is chosen. Therefore, for the
extraordinary wave, the upper sign should be chosen in
(47) in order that the radiation condition be fulfilled.
The frequency spectrum of the extraordinary wave is
shown in Fig. 9(b).

I (w) = £

71
T 128€,u? (7)
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Fig. 8—Frequency spectrum of ordinary wave R=1.
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Fig. 9—(a) Frequency spectrum of ordinary wave R=2~/2. (b)
Frequency spectrum of extraordinary wave R=2+/2.

An examination of Figs. 9(a) and (b) shows that a
uniformly moving charge radiates botk modes in the
frequency range 0 <Q<+/2—1.

ANGULAR SPECTRUM OF THE RADIATED ENERGY

A point charge uniformly moving in an anisotropic
medium in the direction of an external magnetic field,
in general, radiates two modes. In the preceding section,
the frequency spectrum of the emitted radiation was
studied. From (46) it is clear that this radiation is in
the form of a cylindrical wave and different frequency
components, evidently, will radiate in different direc-
tions with respect to the direction of motion of the
charge. Also, the same frequency components in differ-
ent modes may radiate in different directions. It is
therefore of interest to study the angular spectrum of
the radiated energy. The determination of the angular
spectrum involves a great deal of algebraic manipula-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

tion and numerical calculation. For the sake of brevity,
details are omitted and only the essential steps are
indicated. The y components of the Poynting wvector
Syo and S,, for the ordinary and extraordinary modes
are first obtained from the following relations:

Syoz% Re [E¢0(1‘, w)HPO*(r: w) _Epo(r7 O))H¢a*(1‘, w)] (723)
and
Sye=% Re [Edw(r: W) H,* (1, @) — E,o(r, w) Hy*(z, ‘*’)] (72b)

The angle 8 which the Cerenkov ray makes with the
direction of motion of the charge (see Fig. 1) is given by
the following expressions:

Sps

tan § = —— (73a)
Syo
She

tan § = (73b)
Sye

where (73a) and (73b), respectively, refer to the ordi-
nary and extraordinary modes. The angular spectrum
L,(0) and I,(8) for the ordinary and the extraordinary
modes are obviously given by the relations

I,(6) sin 6] d8| = I(w)dw (74a)

and

I,(6) sin 6| d6| = I.(w)dw. (74b)

With the help of (65), (68), (72)-(74), I,(0) and I.(8)
can be computed. The results are plotted in Figs. 10, 11
and 12. For R=1, only the ordinary wave is excited and
its angular spectrum is plotted in Fig. 10. It is seen that
the entire radiation is confined to the half space trailing
the source. The low-frequency end of the spectrum is
radiated at right angles to the direction of motion of the
source and the high-frequency end of the spectrum is
radiated directly behind the source.

For the case R=2+/2 both the ordinary and the ex-
traordinary waves are excited. The angular spectrum
of the ordinary wave for the frequency components ly-
ing in the range 0 <Q <1 are plotted in Fig. 11(a) and
that for +/2+1<Q<3 in Fig. 11(b). It is seen that the
entire radiation corresponding to the frequencies lying
in the range of 0 < <1 is confined to the half space
trailing the source. The {requency components near zero
are radiated directly behind the source, whereas the
frequency components near the plasma frequency are
radiated at right angles to the direction of motion of the
source.

The ordinary wave of {requency components lying in
the range v/2-+1<Q<3 are partly radiated in the for-
ward and partly in the backward directions. The fre-
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Fig. 10—Angular spectrum of ordinary wave R=1.
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Fig. 12—Angular spectrum of extraordinary wave R=2+/2.

quency components in the range 4/2+1<Q<2~/2 are
radiated in a narrow cone of an angle about 10° about
the direction of motion of source, whereas the frequency
components in the range 2+/2<Q <3 are confined to a
very narrow cone trailing the source. In the forward
direction, <.e., for 0 <0<10° approximately, there are
two Cerenkov rays corresponding to each direction and
these two rays clearly correspond to different frequency
components.

The angular spectrum of the extraordinary wave is
plotted in Fig. 12. The entire radiation is confined to a
narrow cone trailing the source. An examination of Figs.
11 and 12 shows that within a narrow cone of approx-
imately 5°, there are three Cerenkov rays, two of which
belong to the ordinary wave, whereas the third belongs
to the extraordinary wave. These three Cerenkov rays
propagating in the same direction, in general, corre-
spond to different frequency components. Although in
the past there have been conjectures on the possibility
of the existence ol multiple Cerenkov rays traveling in
the same direction, it is believed that an explicit evalua-
tion of the multiple Cerenkov rays has been carried out
here for the first time.
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