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Radiation from a Uniformly Moving Charge
in an Anisotropic Plasma*

H. S. TUAN~ AND S. R. SESHADRI~, SENIOR MEMBER, IEEE

Summary-The radiation from a point charge moving uniformly

in a plasma is investigated when the charge is moving in the direction
of an external magnetic field. In general there are two modes, for

each of which all the components of the electric and magnetic field

are present. The two parameters of interest in this problem are the

ratio u/c. of the velocity of the charges to the free-space velocity of

electromagnetic waves and the ratio R of the gyromagnetic frequency

to the plasma frequency of the electrons. For two sets of values of

these parameters the frequency and the angular spectrum of the

emitted radiation are obtained. In certain cases, as many as three

Cerenkov rays are found to propagate in the same direction; these

multiple rays, however, correspond to different frequency com-

ponents and to different modes of propagation. The motivation for

this investigation is indicated briefly.

INTRODUCTION

A

LOW-FREQUENCY radiation

served from space vehicles in

has been ob-

their passage

L a through ionized regions in interplanetary space.

The investigation of possible sources of this radiation is

of current interest. It is possible for charges that collect

on the surface of the space vehicle to radiate in the

course of their motion. Such radiation can have a low

frequency. In order to understand the nature of the lat-

ter type of radiation, the problem of radiation from a

point charge moving uniformly in an anisotropic plasma

is examined in detail in this paper.

The plasma is assumed to be incompressible; it is

idealized so that it has the properties of a dielectric. A

uniform magnetic field is assumed to be maintained

throughout the plasma. The radiation characteristics of

a charge moving uniformly in the direction of the ex-

ternal magnetic field are investigated. It is found that,

in general, the radiation consists of two modes. In all

the cases for which numerical computation of the fre-

quency spectrum has been carried out, the radiation was

found to be always in the lower end of the frequency

spectrum. In the limiting case of an infinite external

magnetic field, the radiation consists of all frequencies

lower than the plasma frequency. This radiation is of

the Cerenkov type and its angular spectrum has been

evaluated for two sets of values of parameters of inter-

est. In certain cases, as many as three Cerenkov rays

are found to propagate in the same direction. These

multiple Cerenkov rays correspond to different fre-

quency components and to different modes of propag-

ation.

* Received January 25, 1963; revised manuscript received May
28, 1963.

t Gordon McKay Lab., Harvard University, Cambridge, Mass.

The theoretical interpretation of Cerenkov radiation

in an isotropic dielectric was first given by Frank and

Tamm.’ The Cerenkov radiation in an isotropic media

such as uniaxial ferrite crystals, has been investigated,

among others, b]- Pafmov2,3 and Ginzburg. 4 Kolomen-

skiis and Sitenko and Kolomenskiib have examined cer-

tain aspects of the problem of radiation by a uniformly

moving charged particle in a plasma with an external

magnetic field. In their papers Kolomenskii and Sitenko

have not systematically investigated the frequency

spectrum of the ordinary and the extraordinary rays

but have given only the frequency limits within which

the two kinds of rays propagate. Moreover, the relative

strengths of the Cerenkov rays of different frequency

components and their angular distribution have not

been given.

An excellent treatment of the general field of Ceren-

kov radiation together with its applications may be

found in the book by Jelleyr and the review article by

Bolotovskii.s

More recently, M aj umdarg has treated the radiation

by a charged particle passing through an electron plasma

in an external magnetic field taking into account the

compressibility of the medium. There have been a num-

ber of investigations of a somewhat practical nature on

Cerenkov radiation from a bunched beam in a bounded

medium such as, for example, those by Coleman1° and

Kenyon.11

11. M. Frank and I. Tamm, “Coherent visible radiation from fast
electrons passing through matter, ” Dokl. Akad. Nuuk. SSSR, vol. 3,
pp. 109–114; January, 1937.

‘ V. E. Pafomov, “Cerenkov radiation in anisotropic ferrites, ”
Soviet Phys. JETP, vol. 3, pp. 597-600; November, 1956.

a V. E. Paf omov, “Peculiarities of Cerenkov radiation in aniso-
;9~$c media, ” Soviet Phys. JETP, vol. 5, pp. 307–309; September,

d “V. L. Glnzburg, Soviet Phys. JETP, vol. 10, pp. 601–608: 1940.
6 A. A. Kolomenskii, “Radiation from a plasma electron m uni-

form motion in a magnetic field, ” Soviet Phys. Doklady, vol. 1, pp.
133–136; January, 1956.

6 A. G. Sitenko and A. A. Kolomenskii, “Motion of a charged
particle in an optically active anisotropic medium I, Sooiet Phys.
JETP, vol. 3, pp. 410-416; Marchl 1956.

7 J. V. Jelley, “Gerenkov radiation and its applications, ” Per-
gamon Press, LondonZ, England; 1958.

s B. M. Bolotorsku, “The Cerenkov effect in infinite media and
in crystals (I) (II ),” llsp. Fiz. Nazzk., vol. 62, pp. 201–230, June,
1957: see also “Theorv of Cerenkov radiation (I I).” Soviet Pkvs.
UsP.; vol. 4, pp. 781–811, October,, 1961.

.,

g S. K. Majumdar, “Radiation by charged particles passing
through an electron plasma in an external magnetic field, ” Proc.
Phys. Sot. (London), vol. 77, pp. 1109–1 120; June, 1961.

‘O P. D. Coleman, ‘[Coherent Cerenkov Radiation Produced by a
Bunched Beam Traversing a Plasma and Ferrite Medium, ” presented
at 4th Internatl. Congress on Microwave Tubes, Scheveningen, Hol-
land; September, 1962.

11R. Kenyon, “Cerenkov radiation in a plasma,” University of
Illinois, Urbana, Tech. Rept. No. 4, Contract No. AF33(616)-7043;
May, 1962.
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FORMULATION OF THE PROBLEM where

Consider an unbounded, homogeneous plasma which,

for the sake of simplicity, is idealized to be an incom-

pressible, loss-free electron fluid, with stationary ions

that neutralize the electrons on the average. An external

magnetic field is assumed to be uniformly impressed

throughout the plasma in the y direction; ~, p and y

form a cylindrical coordinate system (Fig. 1). Let and

a(y – ‘@a(p)
q . go ————

27rp
(1)

represent a point charge qo moving with a uniform veloc-

ity u along the y axis. The current density arising from

this uniformly moving charge is given by

a(y – 2@8(p)
J(r, t) = jq.u J

2Tp
(2)

where r represents the position vector of a point in the

4, p, Y space. It is assumed that the source (2) is Suff-

iciently weak so that linearized plasma theory is appli-

cable.

“=1-(9[1-(31--’

““(w:-%]

()
2

.5; =1–2.

w

(9)

In (9) o, and co, are, respectively, the plasma and the

gyromagnetic frequencies.

lt is obvious that the field components are independ-

ent of @ and are dependent on y only through the phase

factor et”~~u. It is convenient to separate out the y

dependence as follows:

E(2-, cd) = E(p, cd)e’(”l”)~

J.(r, ~) = I,(P, cO)e’’(@/”)”. (lo)

With the help of (6), (7) and (1 O) it is possible to express
;

~p(~, o), ~~(p, Q), E,(p, O) and E,(p, u) in terms of

E+(p, u) and H@(p, u) as follows:

Fig. l—Geometry of the problem.
1

H,(P, u) = —– E@(/J, u) (11)

Let E(r, t) and H(r, t) be, respectively, the electric
‘up.

and magnetic field vectors. It is convenient

Fourier transform pair

j(r, co) = s‘f(r,t)e’wfdt
—.

to the source (2) and the field quantities.

transform of the source (2) is obtained as

a(p)ei(cu/7A)L/Jti(r, O) = q. —
27rp ‘

to apply the
H,(p, cd) = : ; ; [pE#(p, co)]

‘he ‘ourier Also Ed (p, w) and H+ (p, w) may be shown to satisfy the

following coupled equations:

The electric and magnetic fields E(r, a) and H(r, a)

are known to satisfy, ii the frequency domain, the fol- + ‘m’’”’’” Ej(p, OJ) = ;:: J,(p, 0) (15)

lowing Ilfaxwell’s equations:
‘zLel dp

V X E(r, a) = Lqdl(r, co)

[ h

(6) : 1 :(PE4(P, W)) +r<:–x 1JEj(p, co)

V X Ii(r, Q) = – kc.:. E(r, 0) + j.TU(r, w).
dp p ap

(7) – co~ Cl #

The components of the relative dyadic dielectric con-
12Nynez

— — H+(p, m) = o,
stant e are given by the following matrix: ‘l~e~

[

cl iez o 1
where

~= —& 61 0 ,

J

(8) 1

0

~02=—; ~ = ~1~ — @2.

o 63 poeo
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Coupled equations similar to (15) and (16) have been

derived before, among others, by Kales12 in connection

with wave propagation in a ferrite medium.

SPECIAL CASES

The wave equations (15) and (16) become decoupled

when 1) the external magnetic field is absent and 2) the

external magnetic field is infinite. From (9) it is easily

seen that ~z= O in both cases and hence (15) and (16)

reduce to separate wave equations for H@ (p, co) and

E+ (p, o), respectively. The absence of a source term in

(16) together with (11) and (12) leads to the result

-q(% @) = H,(P, a) = ET.(P, cd) = 0. (18)

From (5) and (15) it follows that

d qoa(p)

[1.————, (19)
ilp 27rp

where

(20)

The solution of (19) is easily obtained by the method of

the Hankel transform. The result is

.-

H@(p, CLl)== :k Hl(’)(kp), (21)

where

k=+k. (22)

The sign in (22) is chosen in order to satisfy the radia-

tion condition which requires an outward flow of power

at large distances from the source.

In the absence of an external magnetic field, i.e.,

when the plasma is isotropic, (9) with (20) reduces to

~z=g @P2g,
C02 G02 1P

(23)

Since the velocity Z~ of the point charge is always less

than the velocity c. of the electromagnetic waves in free

space, it follows from (23) that k is purely imaginary.

Hence (21) shows that H~(p, u) rapidly decays from the

source and there is no radiation.

When the external magnetic field is infinite, that is,

in a uniaxially anisotropic plasma, it is found from (9)

and (20) that

“= (H)(wz- (24)

From (24) it is evident that k is real for u <UP and is

imaginary for w >COfl. Therefore, it follows from (21)

that there is radiation only for w <UP. The power radi-

ated per unit path length in the frequency interval be-

tween u and u +dw is given by

I(cu)dcc = 2rpSPdci = Re [~pi!iv(r, co)H@*(r, a)]d~, (25)

where SP is the p component of the Poynting vector.

The expressions for Ev(r, co), and H@ (r, u), needed for

the evaluation of l(a) in (25) are obtained with the use

of (10), (14) and (21). The Hankel function appearing

in these expressions is replaced by the leading term of

its asymptotic expansion for large k. When only the

leading terms are retained, the result is

iqol d 2
H@(r, m) = ~ _ &( L9T3. /4)ei(a/71)Y

rkp

‘i

iq.k’ ‘2–
E,(r, w) = — — ~i(zPT3?r/4)ei (6J/u)u.

8weo~3
(26)

rkp

The substitution of (26) in (25) gives

qo’k~
1(.) = — .

320Jeoe3
(27)

Since in the propagation range u <u., C8is negative, (27)

will be positive only when k = — k. In that case, at large

distances from the source, the net flow of power will be

directed outward from the source, thus satisfying the

radiation condition. Therefore, on using (24) and (9),

(27) reduces to

(28)

l(o) given in (28) is the total energy radiated per unit

frequency interval per unit path length. In Fig. 2 the

frequency spectrum l(u) is plotted as a function of co.

The total energy radiated per unit length of path is

given by

SUP

w=2 I(co)da =
o +%+:)”,2 ’29)

The y component of the Poynting vector S. given by

S. = – ~ Re E,(r, co)Ho*(r, a) (30)

is obtained with the use of (13) and (21) as

‘v= 2:;[(1-3(1-311’2 ’31)

lZ M. L, Kales, “Modes in wa~-e guides containing ferrites, ” ~.
The angle 0 between the direction of motion of the

Appl. Phys., vol. 24, pp. 604–608; hlay, 1953. charge and the Poynting vector, or the direction of the
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~,’q;wp_=—
1(u) :;

—(,.$)
0 32COU2

10
i ----– ----- –-–---,

0.5 -

I
o 1 &

UP

Fig. 2—Frequency spectrum Bo = =.

1

~:2(1_&f~ ~=~ Ic=—
Ic 0

Fig. 3—.qnguIar spectrum Bo = m.

Cerenkov ray is given by

““’=;=-(’-32(+1”2(32)

S.E@(j-,co) = H@(p, cd)Jl(fp)pdp (34a)
o

H,$(p, co) = s‘Z(L~) Jl(rP)i-4- (34b)
0

s03E,+((,LIJ)= q+(p,u)~,(fp)pdp (35a)
o

E@(p, k!) =
J

‘Z(L @)Jl(.tP)w, (35b)
o

where ~1 is the first-order Bessel function. It is con-

venient to introduce the following shorthand notations:

u’ u’ 6,3
k1~=—e8–; — (36)

cog El

(37)

When Hankel transformations (34a) and (35a) are

applied to (15) and (16) and the resulting algebraic

equations for EO ({, u) and no ({, u) are solved, it follows

that

77,$((,co) =
@.?(k22 – H

47A

and

(38)

(39)

In the propagation range u <w., the right-hand side is
iqOlwzpOe2

seen to be negative and hence shows that the Cerenkov Z+ Q-, u) = >

ray makes an obtuse angle with the direction of motion 47ruelA

of charge. It is instructive to examine the angular dis- where
tribution of the radiated energy. The radiation is obvi-

ously circularly symmetrical about the direction of
~4E22e3

A = (k,2 – ~2)(k,z – f2) – ——
travel of the charge. The angular spectrum 1(0) may CO%FC12

be defined by the relation 1(0) sin 19[ W I = l(w)dw. = ((’ – k.’) (j-’ – k,’). (40)
Hence, from (28) and (32), it follows that

. .

Since no ((, w) and ~~(~, w) are odd functions of (, it is

l(o) = ;=
()

2 Cos 0
l–~

(33) . possible to recast (34b) and (35b) in the following form:

o co’

[
l–~cos’o

co~ 12
The angular spectrum is plotted in Fig. 3. From an

examination of (32), it is evident that the lowest fre-

quency is directed behind the source, whereas the fre-

quencies close to w, are radiated at right angles to the

direction of the source. The frequency in the direction

of maximum radiation will depend on the ratio u/co. At

a given time, the entire radiation is contained in the

half space behind the source.

SOLUTION OF THE COUPLED WAVE-EQUATIONS

(15) AND (16)

It is proposed to solve the coupled wave-equations

by the method of the Hankel transform. For that pur-

pose, let the following Hankel transforms of order 1 be

defined

1 ‘_

s
II,$(p, co) = ~ _ 13~((, co)H,@) (f;)jl& (41)

co

1 “_

JE@(p,co)=~ _-E@((,CO)II,(’)((p)fdf.(42)
*

With the help of (38)–(42), it follows that

Hew. (44)

The integral (43) may be evaluated to give the following

result:

H@(p, a) = II+.(P,w) + ~dl% ~), (45)
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where

.
iqoko k.2 — kJ

H+o(p, co) = – ~ ~ , _ ~ , Hl(l)(L?p) (A6a)
0 e“

iqok. k,z — kz2
H@e(P, OJ) = — lll(’)(kcp). (-16b)

8 ko2 – k,2

In (46), & and ~. are given by

& = f kO, ke = ~ k,. (47)

The sign in (47) is chosen so as to obtain a net outward

flow of power at large distances from the source. The

result of the evaluation of the integral (44) can be con-

veniently given as follows:

E,#(p, a) = E+o(p, m) + E+,(P, co), (48)

E+.(P, cd) = -Z~+o(P, @), E,,(p, co) = Zeu,e(p, cd), (49)

It is seen from (45) and (48) that, in general, there are

two possible modes which are denoted by subscripts o

and e. In the preceding section it was found that in the

case of an infinite external magnetic field there is only

one mode with wave number given by (24). Of the two

modes which are possible in the presence of a finite

external magnetic field, that which in the limiting case

of infinite external magnetic field has the same wave

number as given by (24) is designated with a subscript

o (which stands for the ordinary mode). The other mode

which arises only when the external magnetic field is

finite is called the extraordinary mode and is denoted

with a subscript e.

It is evident that the ordinary and extraordinary

modes propagate only when ko and ke are positive and

real. The modes are nonradiating when the correspond-

ing k has an imaginary part. The sign of the roots of

(40), therefore, determines whether the corresponding

mode is propagating or not and is obviously dependent

of the parameters COP,co. and z~. Since the determination

of the signs of the roots of (40) turns out to be difficult in

the general case, the dispersion curves u – ko and m – k.

are examined for some special values of the parameters.

The nature of the radiated fields is then examined for

these special cases.

DISPERSION RELATIONS

In order to find out the frequency spectrum of the

radiated energy, the frequency ranges for which k. and

k. are positive should be determined. Before proceeding

to examine the dependence of k. and k. on W, it is de-

sired to point out that, among others, Allis18 has dis-

13W. P. Allis, “Propagation of waves in a plasma in a magnetic
field, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-9, pp. 79–82; January, 1961.

cussed the characteristics of plane wave propagation in

an anisotropic dielectric using wave-normal surfaces

which by a transformation
lb can be used to investigate

the Cerenkov radiation spectrum. For explicit determina-

tion of the frequency ranges of propagation it is simple

and convenient to determine in a straightforward

manner the functional dependence of k. and k. explicitly

in terms of w. It follows from (36), (37) and (40) that

where

(51)

(52)

‘=[;-2’6)+(363(’’26:’22)1’53)
When the external magnetic field is infinite, it is seen

from (9) that ~,= 1 and e;= O. For this special case,

found from (52) and (53) that

()
~2 2

b=(l+e3) l–~ ,
()

C=e, l–— .
C02 G02

The substitution of (54) in (51) yields

it is

(54)

(55)

where the first term corresponds to the upper sign in

(51) and the second term corresponds to the lower sign.

Comparison of (55) with (24) shows that the upper and

lower signs in (51) correspond, respectively, to the

ordinary and the extraordinary modes.

It is convenient at this stage to specialize and let

ZL/co = l/~~. With the help of (9), therefore, (51) and

(52) become

2Q4– 2WR2+R2 – 2
b= (56)

2fl’(Q2 – R2 – 1)

where

The general behavior of b as a function of Q is different

depending on whether R <~? or R > -/? and these are

14P. S. Johnson, “Cerenkov radiation spectra for a cold magneto-
active plasma, ” Phys. of Fluids, vol. 5, pp. 118–120; January, 1962.
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depicted in Fig. 4. When R < ~~, b has only one zero at
4C

L?= QZ given by

R’ + [(R2 – 1)2 + 3]1/z
Q22 =

2
(59)

(

For R> v’?, in addition to the zero at Q = Qz, b has

another zero at Q = fill, where

R2 – [(R2 – 1)2 + 3]11Z
Q12 =

2
(60)

At Q = Q = ~1+~~, b has a singularity. As Q tends to

infinity, b asymptotically approaches unity.

An examination of (57) reveals that the general be-

havior of 4C as a function of Q, is different depending on

whether R>2 or R<2, (Fig. 5). For R<2, 4C has a

zero for Q = 1 and a singularity at ~ = & When ~ tends

to infinity, 4C asymptotically approaches unity. How-

ever, for R >2, 4C has two additional zeros at Q and fld

given by

It is seen from (51) that the behavior of bz – 4C as a

function of Q is necessary for the determination of the

range of frequencies for which ho and ke are positive and

real. It can be shown with the help of (56) and (57) that

[
2R2 fi2+$l 1

~4[~2 – R2 – 1]2 ‘
(62)

bA

~L1 ;------------

Fig. 4—b as the function of fl.

Plasma

IL1 : ----------

‘m’

Fig. 5—The general behavior of 4C as a function of !i,

\
\
\
\ lk––==-==––

0, a

(a)

(h)

467

(c)

Fig. 6—Behaviorof band 4C as a function of ~. (a) Case 1): O <R < @
(b) Case 2): @<R<2. (c) Case 3): 2z:R< UJ.
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From (62) it is obvious that b2 –4c $0 depending on

whether Q ~ Q where

Q52=1 –:. (63)

It is evident that the general behavior of k. and k.

as a function of Q will be different for the following

three different ranges of R, namely 1) O <R < ~~

2) ~9<1/<2 and 3) 2<R<~. In Fig. 6, band 4c are

plotted as a function of Q for the three different ranges

of R. In particular, for each case, the relative values of

1, ~1 – ~c are made clear.

Case 1)

When f& <~< ~, b2–4c>O; also 4c>0 resulting in

] ~b2-4~\ < I b] and, hence, the signs of ko~ and k,z are

determined by the sign of – b. In that frequency range

b > O; hence koz and k.z are both negative and neither of

the modes propagates. For the same reason both the

modes do not propagate in the frequency range Q5 < Q

<1. When 0<!J<Q5, bz–4c<0 and, hence, k. and k,

will have an imaginary part, as a consequence of which,

both the modes are exponentially damped and there is

no propagation. For 1 <~< ~o, 4C is negative so that

I v’b2-4./ > I b) . Hence, the upper and the lower signs

in (51) yield, respectively, positive and negative values:

the ordinary mode, which corresponds to the upper sign

in (51), propagates in the range 1< ~ <~&

Case 2)

It follows from arguments such as those given above

that neither of the two modes propagates in the ranges

0 <Q <1 and fdfj <Q < w and, as before, the ordinary

mode propagates in the range 1< Q < ~b.

Case 3)

As in the two previous cases, it can be argued that in

the frequency ranges O <Q < fib, 1< ~ < fi~ and f& <fl

< w , there is no propagation. Only the ordinary mode

propagates in the two frequency ranges & <Q <1 and

f2d<f2<~&

In the frequency range Q5 < Q < Q3, b2 – 4C > O; also

since 4c> O, [ ~b2 —4GI < [ b \ . Therefore, the sign of k02

and k,z is the same as that of — b. Since b <O in that

range of frequencies, both ko and ke will be positive,

and hence, both the ordinary and extraordinary modes

propagate in that frequency range.

From the foregoing discussions, it may be concluded

that for R <2, only the ordinary mode propagates in

the frequency range 1 <Q< fl& But for R >2 both modes

propagate, the ordinary mode in the two frequency

ranges ~b < L?<1 and ah< Q < flG and the extraordinary

mode in the frequency range Q5 < !2 <Q3.

In what follows, two special values are chosen for R,

namely R = 1 and R = 2 ~~, which lie respectively in the

two different ranges R <2 and R >2. Note that R = 2~?

gives the widest frequency spectrum for the extraordi-

nary mode. In Fig. 7 the propagation ranges for the

two modes are shown pictorially for the two special

values of R.

EZZl Ordmry Wove Prop. g.t,ng

~ Exfmord,nary WovePropagating

+

0-

(a)

t

(b)

Fig. 7—Propagation ranges for the ordinary and ex~raordinary
modes. (a) Case l): R=l. (b) Case Z): R=2<2.

FREQUENCY SPECTRUM OF THE RADIATED ENERGY

It is possible to show that the ordinary and the ex-

traordinary modes are orthogonal and hence, the total

power radiated can be obtained as the sum of the powers

in each of the two modes separately. The powers radi-

ated in the ordinary and extraordinary modes per unit

path length in the frequency interval between o and

m +du are given, respectively, by

I.(cu)dw = 2mpSPodti I,(m) da = 2mpSP.dw, (64)

where Soo and S., are the p components of the Poynting

vector for the two modes. They are obtained from the

following relations:

The expressions for Ho (r, u), Ed (r, o), HV(r, o) and

E,(r, u) needed for the evaluation of S, in (65) are ob-

tained with the use of (10), (12), (14), (46) and (49).

The Hankel function appearing in these expressions is

replaced by the leading term of its asymptotic expansion

for large k. The result, when only the leading terms are

retained, is as follows:
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Ordinary mode

L
EUO(r, co) = ——— H~O(r, 6J).

k,2 – kz2

d–

2

ko2 _ ~,2 irk,p

.ei(ZeoT3T/4)gi (w/u)v

le

IIv@(r, u) = – — i?~,(r, co)
w 0

1.

EU,(r, w) = — II@e(r, Q).
0Jcoe3

The substitution of (65)–(67) in (64) yields

q02kO&0

[

(ko’ – k,’)’ w’e,’wo 1
l.(.) = — +—

32u(ko’ – k,n) 60C3 ~12u2 J

and

(66)

(67)

(68a)

qozk,~,

[

(kc’ – kz’)2 + W4e2’/.L0
I,(Q) = — 1 (68b)

32co(ko2 – k,z) COC3 El%d

1O(U) given in (68a) is the total energy radiated per unit

frequency interval per unit path length; it is called the

frequency spectrum of the ordinary mode. Similarly,

l,(oJ) is the frequency spectrum of the extraordinary

mode.

It is desired to examine the frequency spectrum for

the particular value of z~/co = 1/ ~~ and for the two cases

R=l and R=4~.

Case l):R=l

In this case, the extraordinary mode is not excited

and, hence, I.(u) = O. The ordinary mode propagates in

the range 1 <Q < ~?. For u/co= l/@ and R= 1, (68a)

can be simplified to yield the following expression for the

frequency spectrum:

I.(a) = * ~
32U2E0

Q [3 – 4(Q2 – ~)’ – 2ti8Q2 – 7][ti8Q2 ––7 + I]

(Q2 – 1)(Q2 – 2)V8Q2 – 7
—, (69)

where the upper and lower signs correspond to the upper

and lower signs in (47). In the frequency range 1< Q

<@, lo(a) is positive only if the upper sign is chosen.

The choice of upper sign in (69) insures that the net flow

of power at large distances from the source is directed

outward and thus the fulfillmenent of the radiation con-

dition is assured by the choice of the upper sign in (47).

The result is a cylindrical wave with outward traveling

phase-front. In Fig. 8 the frequency spectrum is plotted

as a function of Q.

Case 2): R=2@

Both the ordinary and extraordinary modes are ex-

cited when R = 242. The ordinary mode propagates in

the frequency ranges O <!2 <1 and 4?+ 1< Q <3 and

the extraordinary mode, for 0< Q < -@ --1. On setting

I.~/co = l/v’~ and R = 2@ in (68a), the resulting expres-

sion, after some simplification, reduces to the following:

qozcopCl’– 8$X + 4G! + 3
l.(.) = i — .—

128c@ (9 – W)(Q -- 1) ‘
(70)

where, as before, the upper and lower signs correspond

to upper and lower signs in (47). In the frequency range

0< Q <1, l~(u) is positive only if the lower sign is chosen.

The choice of the lower sign in (70) leack to the fulfill-

ment of the radiation condition. This choice of sign in

(47) shows that the ordinary mode in the frequency

range O < S2<1 has an inward traveling phase-front; it

may be called a ‘(backward wave. ” However, in the fre-

quency range @+1 <0<3, the upper sign k (70),
and hence the upper sign in (47), should be chosen in

order that the radiation condition be satisfied. In Fig.

9(a) the frequency spectrum of the ordinary wave is

plotted as a function of Q.

Similarly, the substitution of u/t:o = 1/@ and

R = 2 @ in (68b) will yield, after some simplification,

the

the

following expression for the frequency spectrum of

extraordinary wave:

q02aP Q4 – 8W – 4!2 + 3
1,(0) = + — —— .

128wZ (9 – ~z)(fl + 1)
(71)

In the range O <Q< ti~– 1, l,(@) in (71) is Positive

only when the upper sign is chosen. Therefore, for the

extraordinary wave, the upper sign should be chosen in

(47) in order that the radiation condition be fulfilled.

The frequency spectrum of the extraordinary wave is

shown in Fig. 9(b).
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Fig. 8—Frequency spectrum of ordinary wave R =1.
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Fig. 9–(a) Frequency spectrum of ordinary wave R = 2<2. (b)
Frequency spectrum of extraordinary wave R= 2 @.

An examination of Figs. 9(a) and (b) shows that a

uniformly moving charge radiates botk modes in the

frequency range O <Q < v’2 – 1.

ANGULAR SPECTRUM OF THE RADIATED EiNERGY

A point charge uniformly moving in an anisotropic

medium in the direction of an external magnetic field,

in general, radiates two modes. In the preceding section,

the frequency spectrum of the emitted radiation was

studied. From (46) it is clear that this radiation is in

the form of a cylindrical wave and different frequency

components, evidently, will radiate in different direc-

tions with respect to the direction of motion of the

charge. Also, the same frequency components in differ-

ent modes may radiate in different directions. It is

therefore of interest to study the angular spectrum of

the radiated energy. The determination of the angular

spectrum involves a great deal of algebraic manipula-

tion and numerical calculation. For the sake of brevity,

details are omitted and only the essential steps are

indicated. The y components of the Poynting vector

Sgo and SU, for the ordinary and extraordinary modes

are first obtained from the following relations:

Syo= ~ Re [E+d(r, u) IZp~*(r, a) – Ep~(r, a)HO~*(r, u)] (72a)

and

SU.=~ Re [~~,(r, ~) Hp,*(r, a) –Eo.(r, cu)HO,*(r, 0)]. (72b)

The angle 6 which the Cerenkov ray makes with the

directio~ of motion of the charge (see ‘Fig. 1) is given by

the following expressions:

(73a)

s
tan O=~ (73b)

tie

where (73a) and (73 b), respectively, refer to the ordi-

nary and extraordinary modes. The angular spectrum

l~(tl) and 1,(0) for the ordinary and the extraordinary

modes are obviously given by the relations

and

With the help of (65), (68), (72)-(74), 10(0) and 1,(0)

can be computed. The results are plotted in Figs. 10, 11

and 12. For R = 1,only the ordinary wave is excited and

its angular spectrum is plotted in Fig. 10. It is seen that

the entire radiation is confined to the half space trailing

the source. The low-frequency end of the spectrum is

radiated at right angles to the direction of motion of the

source and the high-frequency end of the spectrum is

radiated directly behind the source.

For the case R = 2 ~? both the ordinary and the ex-

traordinary waves are excited. The angular spectrum

of the ordinary wave for the frequency components ly-

ing in the range O < Q <1 are plotted in Fig. 11 (a) and

that for d~+l <L?<3 in Fig. n(b). It is seen that the

entire radiation corresponding to the frequencies lying

in the range of O < !2 <1 is confined to the half space

trailing the source. The frequency components near zero

are radiated directly behind the source, whereas the

frequency components near the plasma frequency are

radiated at right angles to the direction of motion of the

source.

The ordinary wave of frequency components lying in

the range ~?+ 1< Q <3 are partly radiated in the for-

ward and partly in the backward directions. The fre-
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Fig. 12—.4ngular spectrum of extraordinary wave R =2 <2.

quency components in the range 42+1<Q<242 are

radiated in a narrow cone of an angle about 10° about

the direction of motion of source, whereas the frequency

components in the range 247 <Q <3 are confined to a

very narrow cone trailing the source. In the forward

direction, i.e., for 0<0<10° approximately, there are

two Cerenkov rays corresponding to each direction and

these two rays clearly correspond to different frequency

components.

The angular spectrum of the extraordinary wave is

plotted in Fig. 12. The entire radiation is confined to a

narrow cone trailing the source. An examination of Figs.

11 and 12 shows that within a narrow cone of approx-

imately 5°, there are three Cerenkov rays, two of which

belong to the ordinary wave, whereas the third belongs

to the extraordinary wave. These three Cerenkov rays

propagating in the same direction, in general, corre-

spond to different frequency components. Although in

the past there have been conjectures on the possibility

of the existence of multiple Cerenkov rays traveling in

the same direction, it is believed that an explicit evalua-

tion of the multiple Cerenkov rays has been carried out

here for the first time.
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